Bhat-Ambure, J.; Ambure, P.; Serrano-Candelas, E.; Galiana-Roselló, C.; Gil-Martínez, A.; Guerrero, M.; Martin, M.; González-García, J.; García-España, E.; Gozalbes, R. G4-QuadScreen: A Computational Tool for Identifying Multi-Target-Directed Anticancer Leads against G-Quadruplex DNA. Cancers 2023, 15 (15), 3817.
De, P.; Kar, S.; Ambure, P.; Roy, K. Prediction Reliability of QSAR Models: An Overview of Various Validation Tools. Archives of Toxicology 2022, 96 (5), 1279–1295.
Halder, A. K.; Ambure, P.; Perez-Castillo, Y.; Cordeiro, M. N. D. Turning Deep-Eutectic Solvents into Value-Added Products for CO2 Capture: A Desirability-Based Virtual Screening Study. Journal of CO2 Utilization 2022, 58, 101926.
[Book Chapter] Ambure, P.; Barigye, S. J.; Gozalbes, R. Machine Learning Approaches in Computational Toxicology Studies. Chemometrics and Cheminformatics in Aquatic Toxicology 2021, 125–155.
Puzyn, T.; Sosnowska, A.; Barycki, M.; Rybińska-Fryca, A.; Ambure, P.; Wyrzykowska, E. Computational Tools for Assessing the Risk of Ionic Liquids before Their Use in New Technologies; Laboratory of Environmental Chemometrics, 2019.
Ambure, P.; Bhat, J.; Puzyn, T.; Roy, K. Identifying Natural Compounds as Multi-Target-Directed Ligands against Alzheimer’s Disease: An in Silico Approach. Journal of Biomolecular Structure and Dynamics 2019, 37 (5), 1282–1306.
Karmakar, A.; Ambure, P.; Mallick, T.; Das, S.; Roy, K.; Begum, N. A. Exploration of Synthetic Antioxidant Flavonoid Analogs as Acetylcholinesterase Inhibitors: An Approach towards Finding Their Quantitative Structure-Activity Relationship. Medicinal Chemistry Research 2019, 28, 723–741.
Roy, K.; Ambure, P.; Kar, S. How Precise Are Our Quantitative Structure-Activity Relationship Derived Predictions for New Query Chemicals? ACS omega 2018, 3 (9), 11392–11406.
Roy, K.; Ambure, P.; Kar, S.; Ojha, P. K. Is It Possible to Improve the Quality of Predictions from an “Intelligent” Use of Multiple QSAR/QSPR/QSTR Models? Journal of Chemometrics 2018, e2992.
Roy, K.; Ambure, P.; Kar, S. Prediction Reliability Indicator: A New Tool to Judge the Quality of Predictions from QSAR Models for New Query Compounds. 24th May 2018 in MOL2NET 2018, International Conference on Multidisciplinary Sciences; MDPI AG.
Jana, S.; Jana, J.; Patra, K.; Mondal, S.; Bhat, J.; Sarkar, A.; Sengupta, P.; Biswas, A.; Mukherjee, M.; Tripathi, S. P.; others. LINCRNA00273 Promotes Cancer Metastasis and Its G-Quadruplex Promoter Can Serve as a Novel Target to Inhibit Cancer Invasiveness. Oncotarget 2017, 8 (66), 110234.
Bhat, J.; Mondal, S.; Sengupta, P.; Chatterjee, S. In Silico Screening and Binding Characterization of Small Molecules toward a G-Quadruplex Structure Formed in the Promoter Region of c-MYC Oncogene. ACS omega 2017, 2 (8), 4382–4397.
[Book Chapter] Ambure, P.; Roy, K. CADD Modeling of Multi-Target Drugs against Alzheimer’s Disease. Current Drug Targets 2017, 18 (5), 522–533.
Roy, K.; Ambure, P.; Aher, R. B. How Important Is to Detect Systematic Error in Predictions and Understand Statistical Applicability Domain of QSAR Models? Chemometrics and Intelligent Laboratory Systems 2017, 162, 44–54.
Bhat, J.; Chatterjee, S. Skeleton Selectivity in Complexation of Chelerythrine, Chelerythrine-like Natural Plant Alkaloids with the G-Quadruplex Formed at the Promoter of c-MYC Oncogene: In Silico Exploration. RSC Advances 2016.
Kaulage, M.; Maji, B.; Bhat, J.; Iwasaki, Y.; Chatterjee, S.; Bhattacharya, S.; Muniyappa, K. Discovery and Structural Characterization of G-Quadruplex DNA in Human Acetyl-CoA Carboxylase Gene Promoters: Its Role in Transcriptional Regulation and as a Therapeutic Target for Human Disease. Journal of Medicinal Chemistry 2016, 59 (10), 5035–5050.
Roy, K.; Ambure, P. The “Double Cross-Validation” Software Tool for MLR QSAR Model Development. Chemometrics and Intelligent Laboratory Systems 2016, 159, 108–126.
Mondal, S.; Bhat, J.; Jana, J.; Mukherjee, M.; Chatterjee, S. Reverse Watson–Crick G–G Base Pair in G-Quadruplex Formation. Molecular BioSystems 2016, 12 (1), 18–22.
Saha, T.; Guha, D.; Manna, A.; Panda, A. K.; Bhat, J.; Chatterjee, S.; Sa, G. G-Actin Guides P53 Nuclear Transport: Potential Contribution of Monomeric Actin in Altered Localization of Mutant P53. Scientific Reports 2016, 6 (1), 32626.
[Book Chapter] Ambure, P.; Roy, K. Scoring Functions in Docking Experiments. In Methods and Algorithms for Molecular Docking-Based Drug Design and Discovery; IGI Global, 2016; pp 54–98.
Roy, K.; Das, R. N.; Ambure, P.; Aher, R. B. Be Aware of Error Measures. Further Studies on Validation of Predictive QSAR Models. Chemometrics and Intelligent Laboratory Systems 2016, 152, 18–33.
Ambure, P.; Roy, K. Understanding the Structural Requirements of Cyclic Sulfone Hydroxyethylamines as HBACE1 Inhibitors against Aβ Plaques in Alzheimer’s Disease: A Predictive QSAR Approach. RSC Advances 2016, 6 (34), 28171–28186.
Chakraborty, S.; Ghosh, S.; Banerjee, B.; Santra, A.; Bhat, J.; Adhikary, A.; Chatterjee, S.; Misra, A. K.; Sen, P. C. Mephebrindole, a Synthetic Indole Analog Coordinates the Crosstalk between P38MAPK and EIF2α/ATF4/CHOP Signalling Pathways for Induction of Apoptosis in Human Breast Carcinoma Cells. Apoptosis 2016, 21, 1106–1124.
Roy, K.; Kar, S.; Ambure, P. On a Simple Approach for Determining Applicability Domain of QSAR Models. Chemometrics and Intelligent Laboratory Systems 2015, 145, 22–29.
Grewal, B. K.; Bhat, J.; Sobhia, M. E. Molecular Dynamics Approach to Probe PKCβII–Ligand Interactions and Influence of Crystal Water Molecules on These Interactions. Expert Opinion on Therapeutic Targets 2015, 19 (1), 13–23.
Ambure, P.; Aher, R. B.; Gajewicz, A.; Puzyn, T.; Roy, K. “NanoBRIDGES” Software: Open Access Tools to Perform QSAR and Nano-QSAR Modeling. Chemometrics and Intelligent Laboratory Systems 2015, 147, 1–13.
Ghosh, A.; Pithadia, A. S.; Bhat, J.; Bera, S.; Midya, A.; Fierke, C. A.; Ramamoorthy, A.; Bhunia, A. Self-Assembly of a Nine-Residue Amyloid-Forming Peptide Fragment of SARS Corona Virus E-Protein: Mechanism of Self Aggregation and Amyloid-Inhibition of HIAPP. Biochemistry 2015, 54 (13), 2249–2261.
Nakka, K. K.; Chaudhary, N.; Joshi, S.; Bhat, J.; Singh, K.; Chatterjee, S.; Malhotra, R.; De, A.; Santra, M. K.; Dilworth, F. J.; others. Nuclear Matrix-Associated Protein SMAR1 Regulates Alternative Splicing via HDAC6-Mediated Deacetylation of Sam68. Proceedings of the National Academy of Sciences 2015, 112 (26), E3374–E3383.
[Book Chapter] Ambure, P.; Aher, R. B.; Roy, K. Recent Advances in the Open Access Cheminformatics Toolkits, Software Tools, Workflow Environments, and Databases. In Methods in Pharmacology and Toxicology; Springer, 2015.
Kodisundaram, P.; Duraikannu, A.; Balasankar, T.; Ambure, P. S.; Roy, K. Cytotoxic and Antioxidant Activity of a Set of Hetero Bicylic Methylthiadiazole Hydrazones: A Structure-Activity Study. International Journal of Molecular and Cellular Medicine 2015, 4 (2), 128.
Brahmachari, G.; Choo, C.; Ambure, P.; Roy, K. In Vitro Evaluation and in Silico Screening of Synthetic Acetylcholinesterase Inhibitors Bearing Functionalized Piperidine Pharmacophores. Bioorganic & Medicinal Chemistry 2015, 23 (15), 4567–4575.
Ambure, P.; Roy, K. Exploring Structural Requirements of Imaging Agents against Aβ Plaques in Alzheimer’s Disease: A QSAR Approach. Combinatorial Chemistry & High Throughput Screening 2015, 18 (4), 411–419.
Chaudhary, N.; Nakka, K.; Chavali, P.; Bhat, J.; Chatterjee, S.; Chattopadhyay, S. SMAR1 Coordinates HDAC6-Induced Deacetylation of Ku70 and Dictates Cell Fate upon Irradiation. Cell Death & Disease 2014, 5 (10), e1447–e1447.
Ambure, P.; Roy, K. Exploring Structural Requirements of Leads for Improving Activity and Selectivity against CDK5/P25 in Alzheimer’s Disease: An in Silico Approach. RSC Advances 2014, 4 (13), 6702–6709.
[Book Chapter] Aher, R.; Ambure, P.; Roy, K. On Some Emerging Concepts in the QSAR Paradigm. In Current Applications of Chemometrics; Nova Science, 2014.
Ambure, P.; Kar, S.; Roy, K. Pharmacophore Mapping-Based Virtual Screening Followed by Molecular Docking Studies in Search of Potential Acetylcholinesterase Inhibitors as Anti-Alzheimer’s Agents. Biosystems 2014, 116, 10–20.
Chakraborty, P.; Ambure, P.; Roy, K. DTC-MLR: An Open Access Web-Based Tool for MLR Model Development and Validation with Application in QSAR Studies. Journal of Engineering, Science & Management Education 2014, 7 (3), 172–177.
Kare, P.; Bhat, J.; Sobhia, M. E. Structure-Based Design and Analysis of MAO-B Inhibitors for Parkinson’s Disease: Using in Silico Approaches. Molecular diversity 2013, 17, 111–122.
Sobhia, M. E.; Grewal, B. K.; Bhat, J.; Rohit, S.; Punia, V. Protein Kinase C ΒII in Diabetic Complications: Survey of Structural, Biological and Computational Studies. Expert opinion on therapeutic targets 2012, 16 (3), 325–344.
Ambure, P. S.; Gangwal, R. P.; Sangamwar, A. T. 3D-QSAR and Molecular Docking Analysis of Biphenyl Amide Derivatives as P38 α Mitogen-Activated Protein Kinase Inhibitors. Molecular diversity 2012, 16 (2), 377–388.